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RIGID ELLIPSOIDAL DISC AND NEEDLE IN AN ANISOTROPIC 

ELASTIC MEDIUM* 

G. N. MIRENKOVA and E. G. SOSNXNA 

The problem of stress concentration on an absolutely rigid ellipsoidaldiscandneedle 
in an arbitrary anisotropic elastic medium subjected to a homogeneous external field 
is solved. The ellipsoidal disc (needle) is understood to be an ellipsoidal inclu- 
sion one of whose dimensions is small (large) compared to the other two. Explicit 
expressions are obtained and studied,for the stresses on the whole surface of the 
stiff inclusion. It is shown that the stresses are singular (large compared to one, 
but finite) in the neighborhood of the needle endface for tension and shear acting 
in the plane of the edge. Explicit expressions are presented for the stress on the 
surface in the particular case of a transversally isotropic medium. In general solu- 
tion of the problem concerning stress concentration on the surface of an ellipsoidal 
inhomogeneity /l/ and the method of expanding the solution in a small parameter /2/ 
based on application of the theory of generalized functions, special methods of ex- 
tracting singularities and regularizing divergent integrals are used. 

1. The stresses @B(n) on the surface of an ellipsoidal inclusion in an external homo- 
geneous field CT@ have the form 

a=qn)=FP.Bh;(n)u~'L (1.11 

Here F(n) is the tensor stress concentration coefficient dependent on the normal n== {nl,na, 

4 to the surface of an ellipsoid with the semiaxes a, (a = 1, 2, 3) f and representable as 
the product of two factors 

E?&(a) = B%&’ (n) Rp.+,;; (1.2) 

The first factor B(n) depends on the ellipsoid parameters implicitly through the normal II 
and upon passing to the limit cases contains no singularities. For a rigid inclusion 

Ra$, (n)==:@"PK !Wr(n) 

where PSxP is the tensor of the elastic constants of the external medium, and the tensorX(n) 
is constructed explicitly in terms of the Fourier transform of the Green's tensor for an arbit- 
rary anisotropic medium. The expression for the tensor K(n) for an isotropic medium is 

presented in /l/ in an {jc1,&‘,28) coordinate system coupled rigidly to the ellipsoid, and the 
components of K(n) for an orthotropic medium have the form 

Km (n) = 7 n12n?* p,a [(c,~ -1. cds) (czs A cp4) - cQ3 (cl2 I- css)] - (cl2 -t- cd (wQ -4 c44n22)) 



Ellipsoidal disc and needle in an anisotropic medium 123 

Here A and & are,\respectively, the determinant and cofactor of the element Cab of the 

matrix II ca(l II (a, B = 1, 2, 3). The remaining components of the tensor K,*(n) are obtained 

from a cyclic permutation of the subscripts 1,2,3 and 4,5,6. 
The second factor R in (1.2) depends substantially on the shape of the inclusion. For 

an ellipsoid this is a constant tensor of orthorhcmbic structure, inverse to the tensor 

B= d?&!!k 1 B(n) dn 
0 

(DGO)” 

na% = alfnla f aa*rQ + a&,* 

The tensor R becaues singular upon going over to the disc and needle. 
To describe the geometry of the limit case being considered, we introduce, as in /2/,the 

dimensionless parameters 

a = a&, g = a& (aI > a, > as) 

where a<(*, E-1 corresponds to the needle E<i, a--i to a disc, and aei, f<f to 
an elongated disc. 

The solution of the stress concentration problem at a needle and disc reduces to the cal- 
culation of the principal terms in the expansion of the tensor R in an appropriate small 
parameter. The solution is sought in the class of generalized functions. 

2. Let us first consider a stiff disc (g<i, a- 1). Applying the method of expanding 
the tensor B in a small parameter g proposed in /2/, we obtain 

B (cp, t) E B (n (cp, t)), t = cos 0 

(9, 8 are specific coordinates with a polar axis directed along the 2 axis). 
We note that the tensor B, is easily evaluated for an arbitrary anisotropic medium, and 

equals the value of the tensor B(n) for n,=n,=O, n,=l. In particular, the components 
of B, different from zero for an orthotropic medium have the form 

Without performing specific calculations of the coefficient BI, this permits settingup 
orders of the singularities in the concentration coefficient components for an arbitrary anis- 
otropic medium, and the stresses on a disc surface, respectively. In fact, the ccmponents of 
the tensor B have the following orders in 5: 

q;-BB!?;;‘;;g, B?&.-B??~-B!?; -con&-t-O(E) (a=l,2,3; 3=1,2) 

The components of the inverse tensor to R have singularities of the order of E-l in the 
cunponents R?&, fl&, Rt!;;. 

Taking account of only singular terms, from (1.1) and (1.2) we obtain an expression for 
the stress on a disc surface 

It is hence seen that singularities in the stresses can appear subjected to external tension 
u,u(k= 1, 2.3) and shear u,,m acting in the plane of the disc edge (n8=O) 

Taking into account the structure of the tensor B(n), we obtain that the behavior of the sing- 
ular components of the stresses is governed by the following quantities: 

For tension 



124 G. N. Mirenkova and E. G. Sosnina 

POX shear 

a""(n)-- ?a&,-1& a'2(n) -(rQ -;- YQ,pl$, o=(n) -n&-%;s, u23 (n) - ?z&%(y 

ft follows from the formulas obtained that singularities in the stresses 
2,3) and c%*(a) occur at the edge of the disc fn12 -j- nz2 

fJ= (n) (a --- 2, 
=1) and in its neighborhood, while 

the stress surge phenomenon holds for the shear ool* instresses c+(n) and @(n)(thestresses 
reach h maximumintheneighborhoodoftheedgealthoughtheyare zeroonthe edge itself). 

3. Let us consider a needle (cc< 1, 5- 1). Performing transformations in the tensor B, 
analogous to transformations for a hollow needle /2/ and using the method of regularizing in- 
tegrals of the generalized homogeneous functions (see /3/, p.3851, we obtain the following 
expansion for the tensor 13: 

3 = B, + B,c?lnu f- O(u"f (3.11 

Here cp,e are sphexical coordinates with a polar axis directed along the axis 9. 
In constrast to a hollow needle, in order to calculate the principal term in the expan- 

sion of the tensor fi it is necessary to take account of at least the first two terms in B 
since the tensor 8, has no inverse. 

Using the expansion (3-l), we establish that the components BB.ft;' of the tensor B are 
of the orders a%a, and all the rest the orders [const -+ Q(aelna)]. Correspondingly, a sing- 
ularity of order (~$Ina)-~ holds in the tensor R in the components @$a @ = 1, 2, 3). 

Prom Il.11 and (1.2) we obtain the singular stress compnents on the needle surface 

a"qn)=B~~; (n)Ru~;io~ (L=l, 2, 3) 

It is hence seen that singular stresses occur on the needle surface only under the effect of 
external tensile forces. Pure shear does not produce singularities in the stresses. Taking 
account of the structure of the tensor B (R)~ it can be shown that the behavior of the stress- 
es on the needle surface is determined by the following quantities 

uas (n) - nLo (CC~ In a)%~ @ = 1 I 23) 

@(a)--n,%gt, ffPln a)"op 

CP (Ii) - qnz (a2 In a)-%~~, ox3 (a)- YzlrtS (a2 111 a>-‘@ 

Analyzing the expressions obtained, we find that the StresSes U@~(s) are singular at 
the needle endface (n, = a) and its neighborhood, while the stress surge phenomenon holds in 
the components @B(n) (ot# j3) in the neighborhood of the endfaces. 

4. Let us consider the case of an elongated disc (a((1, 5x4) which is of independent 
interest. Expansions of the tensors 3 and R can be obtained for an elongated disc by pass- 
ing to the limit from the formulas for a disc of finite size as a-+0, or from the formulas 

for a needle as L$+O. Passing ta the limit in (3.11, say, as g-+0,' we obtain 

Here the expresion for B, is written in regularized form. Continuing reasoning analogous to 

the preceding, we establish that the qualitative pattern of the stress behavior on the surface 
of an elongated disc is exactly as in the case of a finite size disc, i.e., the singularities 
in the stresses hold at the disc edge or in its neighborhood. However, if the orders of the 

singularities for shear forces are identical in both cases, then under tension stresses of the 

order of E-' hold on the elongated disc only at side points of the edge, and grow to magni- 
tudes on the order of (Ea" In a)-' in the neighborhood of the endfaces. 



Ellipsoidal disc and needle in an anisotropic medium 125 

Let us note that in contrast to cavities /2/, the order of the singularitiesinthestress- 
es on rigid inclusions depends substantially on the quantity of -11 pSremtets describing 
the gecmetq of the inclusion: singularities in a needle and disc are characterieed by one 

small parameter, and by two in MI elongated disc. 

5. In conclusion, let us present explicit expressions for the stresses along the princi- 
pal sections n, = O,n,=O of the surface of the rigid inclusions in a transversely-isotropic 
medium. We write the stresses in a local coordinate system coupled to the normal n at each 
point of the surface as follows: 

(% are directions of the coordinate system .9, and C+ are directionsofthelocalsystem). 
Then the stress o*'*'(a) is always along the normal to the surface, c@'l' (n) perpendicular to 
the plane of the seCtionS and #**(II) along the section contour. 

Because of awkwardness of the general expressions , we present formulas for the stresses 
&B'(n) only with singular terms taken into account. In the section n, =O they have the 
following form for an orthotropic medium 

(5.1) 

To obtain the stresses &p(n) in the section n, = 0 it is necessary to execute the 
change of subscript l-2,4*5 in the right sides of (5.1). 

For a transversely-isotropic medium with an axis of elastic symmetry directed along the 
BxiS 3% the components &a are 

en = El (1 - ~?)A,, csx = C,S = E, (p - +)A, 

Cl1 = Cl8 = vv% (1 -t W,, cts = E, @@.-I- va*)Al 

C# = 'jr (cm - cl& ce3 = ~6% = G 

p = E, i E,, A, = (3 4- v&+ (1 -v,) - 2vp9]-' 

Here E1,vl and E,,vx are the Young's moduli and Poisson*s ratios of the media in the plane 
of isotropy and the direction of the elastic symmetry axis, respectively, and G is the shear 
modulus inthe direction of the axis of symstzy. 

The canpnents of the tensor II for the elongated disc have the form 

lz- G 
4~s El 
(f +v11 * %= u;(t+v’) 

For the needle 

(5.2) 

(5.3) 
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In the isotropic case aa'B' (n) are obtained from (5.1)- (5.3) for x = 1, g = 2v, GIE, = GIE, =- 
'/z (1 + v) where v is the Poisson's ratio. 

In the axisymmetric problem (& = 1, uoz2 = a~~', uOafi = 0 (a# fi)) the expressions (5.1) and 
(5.3) agree with those known /4/. 
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